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Region-based fusion of infrared and visible images using

nonsubsampled contourlet transform
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With the nonsubsampled contourlet transform (NSCT), a novel region-segmentation-based fusion algorithm
for infrared (IR) and visible images is presented. The IR image is segmented according to the physical
features of the target. The source images are decomposed by the NSCT, and then, different fusion rules for
the target regions and the background regions are employed to merge the NSCT coefficients respectively.
Finally, the fused image is obtained by applying the inverse NSCT. Experimental results show that the
proposed algorithm outperforms the pixel-based methods, including the traditional wavelet-based method
and NSCT-based method.
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Image fusion aims at synthesizing information from mul-
tiple source images to obtain a more accurate, complete
and reliable description of the same scene. The fusion
of the infrared (IR) image and the visible image is an
increasingly important topic and is being employed in
many fields such as night vision, video surveillance, and
so on.

During the last decade, a number of fusion algorithms
have been proposed, and the fusion methods based on
the multiscale transform (MST) are the most typical.
The commonly used MST tools include the Laplacian
pyramid[1,2] and the wavelet transform (DWT)[3]. In
general, due to the perfect properties of the DWT such
as multiresolution, spatial and frequency localization,
and direction, the DWT-based methods are superior to
the pyramid-based methods[4]. However, the DWT also
has some limitations such as limited directions and non-
optimal-sparse representation of images. Thus, some
artifacts are easily introduced into the fused images
using the DWT-based methods, which will reduce the
quality of the resultant image consequently[5]. In 2006,
Cunha et al. proposed a novel multiscale geometric anal-
ysis (MGA) tool, namely, the nonsubsampled contourlet
transform (NSCT)[6]. The NSCT is not only with mul-
tiscale, localization, and multi-direction, but also with
properties of shift-invariance and the same size between
each subband image and the original image. Therefore,
the NSCT is more suitable for image fusion.

In addition, most of the above fusion algorithms are
mainly pixel-based methods. However, for most im-
age fusion applications, it seems more meaningful to
combine objects rather than pixels[7]. Therefore, some
region-based fusion algorithms[8−12] have been proposed
in recent years. In this paper, we present a novel region-
based fusion algorithm (NSCT RG) for IR and visible
images using the NSCT. Segmentation is firstly per-
formed on the IR image and, consequently, the NSCT
coefficients from the target regions and the background
regions are merged separately. Finally the fused image
is obtained by performing inverse NSCT.

The NSCT is a shift-invariant version of the contourlet
transform[13]. To achieve shift-invariance, the NSCT

eliminates the downsamplers and the upsamplers during
the decomposition and the reconstruction of the image,
and then it is built upon the nonsubsampled pyramid
filter banks (NSPFBs) and the nonsubsampled direc-
tional filter banks (NSDFBs). Figure 1 displays the
construction of the NSCT.

The NSPFB and NSDFB, employed by the NSCT, are
both two-channel nonsubsampled filter banks (NSFBs).
And both of them satisfy the Bezout identity, which
guarantees the perfect reconstruction. To achieve the
multiscale decomposition, the two-channel NSPFB is it-
eratively used. Such expansion is conceptually similar to
the one-dimensional (1D) ‘à trous’ wavelet transform. To
achieve finer direction decomposition, the NSDFB is also
iteratively used. For example, to achieve the four-channel
direction decomposition, the image is firstly filtered by
the original fan filters; Secondly, the filtered subband
images are respectively filtered by the upsampled filters,
in which the sampling matrix D is the quincunx matrix,

i.e., D =

[

1 −1
1 1

]

. Then the four-channel direction

decomposition is obtained.
The building block two-channel NSFBs in the NSPFB

and the NSDFB are invertible; therefore, the NSCT is
clearly invertible. As well, the NSCT can satisfy the
anisotropic scaling law, which is a key property in estab-
lishing the expansively nonlinear approximation behav-
ior. This property can be ensured by doubling the num-
ber of directions in the NSDFB expansion at every other

Fig. 1. Nonsubsampled contourlet transform.
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Fig. 2. Block diagram of the proposed image fusion algorithm.

scale. After J level NSCT decomposition, one lowpass

subband image and
J
∑

j=1

2lj bandpass directional subband

images are obtained, all of which have the same size as
the input image. And the lj denotes the direction de-
composition levels in the NSDFB at the jth scale.

Figure 2 shows the block diagram of the proposed
NSCT RG algorithm. To be convenient, we suppose the
source IR and visible images have been registered before
image fusion.

During the fusion process, the first step is to choose
the IR image as object image to perform segmentation
by region merging. In the segmented IR image, it is easy
to find the target regions, which have higher contrast
compared with the neighboring background[8]. Then a
confidence measure[12] for each candidate region is com-
puted, and candidate regions with high confidence are
selected as target regions. The regions are also mapped
to the visible image.

The second step is to employ different fusion rules for
the target regions and the background regions to merge
the source NSCT coefficients. For the target regions, a
special fusion rule should be employed to preserve the full
target information as much as possible[8]. Therefore, the
corresponding fusion rule for the target region RT can be
written as

CF(m, n) = CIir(m, n), (m, n) ∈ RT, (1)

where C(m, n) includes all subband coefficients of the
NSCT.

Compared with the target regions, the background
regions are with abundant detail information. To ex-
tract more information from the source images as much
as possible, we firstly introduce the structure similarity
(SSIM)[14], which is defined as:

SSSIM(Iir, Ivi) =

(

2Iir · Ivi + C1

)

(

Iir
2
+ Ivi

2
+ C1

) ·
(2σIir,Ivi + C2)

(σ2
Iir + σ2

Ivi + C2)
,

(2)

where C1 and C2 are small constants. Iir and Ivi denote
the mean of the IR image Iir and the visible image Ivi,
respectively, σIir and σIvi denote the corresponding vari-
ance, and σIir,Ivi denotes the covariance. Here, we employ
the SSIM to measure the corresponding region similarity
between the source images. And a threshold α is also
introduced in this paper.

In case SSSIM(Iir, Ivi) ≥ α, the two regions of the IR im-
age and the visible image are with higher similarity and
more redundant information exists between the source
images[15]. Then the fusion rules are written as

CF
j0(m, n) =

(

CIir
j0 (m, n) + CIvi

j0 (m, n)
)

/2, (m, n) ∈ RB,

(3)

CF
j,r(m, n) =















CIir
j,r(m, n), EIir

j,r(m, n) > EIvi
j,r(m, n)

& (m, n) ∈ RB

CIvi
j,r (m, n), EIir

j,r(m, n) ≤ EIvi
j,r(m, n)

& (m, n) ∈ RB

,

(4)

where Cj0 (m, n) denotes the lowpass subband
coefficients, Cj,r(m, n) denotes the bandpass directional
subband coefficients at the jth scale and on the rth
direction in the NSCT domain. RB denotes the back-
ground region. Ej,r(m, n) denotes the local area energy
of the NSCT coefficients and is defined as (the size of
the local area M1 × N1 may be 3 × 3 or 5 × 5, ect.)

Ej,r(m, n)

=

(M1−1)/2
∑

x=−(M1−1)/2

(N1−1)/2
∑

y=−(N1−1)/2

|Cj,r(m + x, n + y)|
2
. (5)

In case SSSIM(Iir, Ivi) < α, the two regions are with
less similarity and more conflictive information exists be-
tween the source images[15]. To select the regions as the
fused regions properly, a region salience measure should
be defined. Here, to make best use of the direction in-
formation of the NSCT, we use the normalized Shan-
non entropy[11] as the region salience measure, which is
defined as

S(R) =
1

|R|

∑

∀j,r,(m,n)∈R

|Cj,r(m, n)|
2
log |Cj,r(m, n)|

2
, (6)

with the convention 0 log 0 = 0, where |R| is the size of
the region R. Then the fusion rule can be written as

CF(m, n) =











CIir(m, n), SIir(R) > SIvi(R)
& (m, n) ∈ RB

CIvi(m, n), SIir(R) ≤ SIvi(R)
& (m, n) ∈ RB

. (7)
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Table 1. Performance of Different Fusion Methods

Method AVE PL DWFT PL NSCT PL NSCT RG

Q(Iir,F) 0.1673 0.1966 0.2010 0.1743

Q(Ivi,F) 0.1962 0.2722 0.2802 0.3318

Experiment 1 Q(Iir,Ivi,F) 0.3635 0.4688 0.4811 0.5061

L(Iir,Ivi,F) 0.6071 0.3841 0.3811 0.3747

N(Iir,Ivi,F) 0.0620 0.3413 0.3226 0.2429

Q(Iir,F) 0.2485 0.2939 0.2982 0.2497

Q(Ivi,F) 0.2314 0.2565 0.2591 0.3484

Experiment 2 Q(Iir,Ivi,F) 0.4798 0.5504 0.5573 0.5980

L(Iir,Ivi,F) 0.4816 0.3065 0.3027 0.2782

N(Iir,Ivi,F) 0.0820 0.3290 0.3237 0.2018

After merging the NSCT coefficients, the final step is
to perform the inverse NSCT on the merged coefficients,
and then the fused image is obtained.

Two sets of IR and visible images of the same scene
have been used to demonstrate the effectiveness of the
proposed fusion algorithm. For comparison, the fusion
is also performed using other three pixel-based methods
including the averaging method (AVE PL), the discrete
wavelet frame transform based method (DWFT PL) and
the NSCT based method (NSCT PL). In the DWFT PL
method and the NSCT PL method, the lowpass sub-
band coefficients and the bandpass subband coefficients
are simply merged by the ‘averaging’ scheme and the
‘absolute-value-maximum’ scheme respectively. Figures
3 and 4 show the fusion results.

Visual comparison indicates that our proposed method
is far superior to the other three methods. In Fig. 3, it
is clear that the fence detail from the visible image is far
better transferred into the fused image obtained by the
proposed method and the human figure is much brighter
in Fig. 3(f) than that in the fused images obtained by
the other methods. In Fig. 4, similar conclusions can
also be obtained.

The gradient-based representation metric[16] is used
as the evaluation criteria for quantitative assessment of
the fusion performance. We use the symbols Q(Iir, F)
and Q(Ivi, F) to represent the information contributions
of individual input images Iir and Ivi toward the fused
image F in the fusion process. And we use the symbols
Q(Iir, Ivi, F), L(Iir, Ivi, F) and N(Iir, Ivi, F) to represent
the total information transferred from the two inputs, the

Fig. 3. Test images and fusion results in experiment 1. (a) IR
image; (b) visible image; (c) fused image using the AVE PL
method; (d) fused image using the DWFT PL method; (e)
fused image using the NSCT PL method; (f) fused image
using the proposed NSCT RG method.

Fig. 4. Test images and fusion results in experiment 2. (a) IR
image; (b) visible image; (c) fused image using the AVE PL
method; (d) fused image using the DWFT PL method; (e)
fused image using the NSCT PL method; (f) fused image us-
ing the proposed NSCT RG method.

information lost during the fusion process and the ar-
tificial information introduced into the fused image, re-
spectively. Larger Q(Iir, F), Q(Ivi, F) and Q(Iir, Ivi, F)
values indicate that more information has been extracted
from the input images and then injected into the fused
image. Smaller L(Iir, Ivi, F) and N(Iir, Ivi, F) values in-
dicate that less useful information has been lost and less
false information has been introduced during the fusion
process.

Table 1 gives the quantitative results. According to
Table 1, we observe that, due to the fact that the av-
eraging operation is directly performed on the source
images, few artifacts are introduced into the fused im-
age obtained by the AVE PL method, but much more
useful information is also lost during the fusion pro-
cess. The NSCT-based methods, especially the proposed
NSCT RG method, significantly outperform the DWFT-
based method in terms of higher values of Q(Iir, F),
Q(Ivi, F) and Q(Iir, Ivi, F), together with lower values of
L(Iir, Ivi, F) and N(Iir, Ivi, F), which greatly agrees with
what have been discussed above. However, the improved
performance is with a cost of increased computational
complexity of the fusion process.
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Alexander Toet of the TNO Human Factors Research
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